

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A

Solar Neutrinos

Atmospheric

Neutrino Mixing

Supernova

Current Experiments

Future Experiment DUNE/LBNI

Canalusian

The Little Neutral One

A brief introduction to neutrinos Idaho State University, November 16, 2015

Mary Bishai Brookhaven National Laboratory

November 16, 2015

About Neutrinos

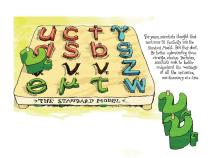
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A

Solar Neutrinos

Atmospheri Neutrinos


Neutrino Mixing

Supernova Neutrinos

Current Experiments

Future Experiments

Conclusions

From Symmetry Magazine, Feb 2013

Cosmic Gall

- Neutrinos, they are very small.
- They have no charge and have no mass
- And do not interact at all.
- The earth is just a silly ball
- To them, through which they simply pass,
- Like dustmaids down a drafty hall
- Or photons through a sheet of glass.
- They snub the most exquisite gas,
- Ignore the most substantial wall,
- Cold-shoulder steel and sounding brass,
- Insult the stallion in his stall,
- And, scorning barriers of class,
- Infiltrate you and me! Like tall
- And painless guillotines, they fall
- Down through our heads into the grass.
- At night, they enter at Nepal
- And pierce the lover and his lass
- From underneath the bed-you call
- It wonderful; I call it crass.

Credit: "Cosmic Gall" from Collected Poems 1953-1993, by John Updike. Copyright John Updike. Used by permission of Alfred A. Knopf, a division of Random House, Inc.

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrinos

Atmospheri

Neutrino

Supernova

Current Experiments

Future Experiments DUNE/LBNF

Conclusion

A BRIEF HISTORY OF THE NEUTRINO

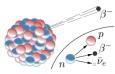
The Little Neutral One

Mary Bisha Brookhaven National Laboratory

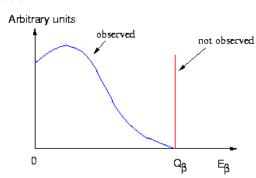
Neutrinos: A History

Solar Neutrino

Atmospheri


Neutrino

Supernova Neutrinos


Current Experiments

Experiments
DUNE/LBNF

Conclusion

<u>Before 1930's</u>: beta decay spectrum continuous - is this energy non-conservation?

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospher Neutrinos

Neutrino Mixing

Supernova Neutrinos

Current Experiments

Future Experiment DUNE/LBNI

Conclusion

<u>Dec 1930:</u> Wolfgang Pauli's letter to physicists at a workshop in Tubingen:

Dear Radioactive Ladies and Gentlemen.

Wolfgang Pauli

......., I have hit upon a desparate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons.... The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant........

Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back. Your humble servant

. W. Pauli

The Little Neutral One

Mary Bishal Brookhaven National Laboratory

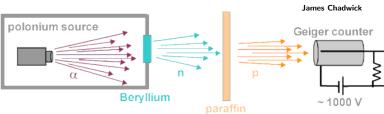
Neutrinos: A History

Solar Neutrino

Atmospher Neutrinos

Neutrino Mixing

Supernova Neutrinos


Current Experiment

Future Experiments DUNE/LBNF

Conclusions

1932: James Chadwick discovers the neutron, mass_{neutron} = $1.0014 \times \text{mass}_{\text{proton}}$ - its too heavy - cant be Pauli's particle

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrinos

Atmospheri Neutrinos

Neutrino

Supernova

Current Experiments

Experiment DUNE/LBN

Canalusian

Solvay Conference, Bruxelles 1933: Enrico Fermi proposes to name Pauli's particle the "neutrino".

Enrico Fermi

Particle physics units and symbols

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospheri Neutrinos


Neutrin Mixing

Supernova Neutrinos

Current Experiments

Future Experiments DUNE/LBNF Symbols used for some common particles:

Symbol	Particle		
$\overline{\nu}$	Neutrino		
γ	Photon		
\mathbf{e}^{-}	Electron		
$\mathbf{e^+}$	Anti-electron (positron)		
р	proton		
n	neutron		
N	nucleon - proton or neutron		

Particle physicists express masses in terms of energy, E = mc² Mass of proton = 1.67 \times 10^{-24} g \approx 1 billion (Giga) electron-volts (GeV)

1 thousand GeV = energy of a flying mosquito

Finding Neutrinos...

The Little Neutral One

Neutrinos: A History

1950's: Fred Reines at Los Alamos and Clyde Cowan use the Hanford nuclear reactor (1953) and the new Savannah River nuclear reactor (1955) to find neutrinos. A detector filled with water with CdCl₂ in solution was located 11 meters from the reactor center and 12 meters underground.

The detection sequence was as follows:

$$1 \hspace{-.1cm} \bar{\nu_{\rm e}} + {\rm p} \rightarrow {\rm n} + {\rm e}^+$$

$$2 e^+ + e^- \rightarrow \gamma \gamma$$

3 n +
108
 Cd \rightarrow 109 Cd* \rightarrow 109 Cd + γ ($\tau = 5\mu$ s).

Neutrinos first detected using a nuclear reactor!

Reines shared 1995 Nobel for work on neutrino physics.

ν : A Truly Elusive Particle!

The Little Neutral One

Mary Bisha Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospheri Neutrinos

Neutrin Mixing

Supernova Neutrinos

Current Experiments

Experiments
DUNE/LBNF

Conclusions

Reines and Cowan were the first to estimate the interaction strength of neutrinos.

The cross-section is $\sigma \sim 10^{-43} {\rm cm}^2$ per nucleon (p,n).

$$\nu$$
 mean free path = $\frac{\text{Mass of the proton}}{\sigma \times \text{density}}$

$$= \frac{1.67 \times 10^{-24} \text{g}}{10^{-43} \text{cm}^2 \times 11.4 \text{g/cm}^3}$$

$$\approx 1.5 \times 10^{16} \text{m}$$

A proton has a mean free path of 10cm in lead

Neutrino detectors have to be MASSIVE

Discovery of the Muon (μ)

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

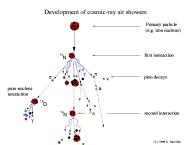
Solar Neutrinos

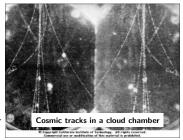
Atmospheri Neutrinos

Neutrino Mixing

Supernova Neutrinos

Current Experiment


Future Experiment DUNE/LBNF


Conclusions

1936: Carl Andersen, Seth Neddermeyer observed an unknown charged particle in cosmic rays with mass between that of the electron and the proton - called it the μ meson (now muons).

Commercial use or medification of this material is prohibited

The Lepton Family and Flavors

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospheri Neutrinos

Neutring Mixing

Supernova Neutrinos

Current Experiment

Future Experiment DUNE/LBN

Conclusion

The muon and the electron are different "flavors" of the same family of elementary particles called leptons.

Generation	1	H H	Ш
Lepton	e ⁻	$oldsymbol{\mu}$	au
Mass (GeV)	0.000511	0.1057	1.78
Lifetime (sec)	stable	$2.2 imes 10^{-6}$	2.9×10^{-13}

Neutrinos are neutral leptons. Do ν 's have flavor too?

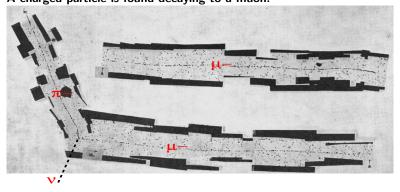
Discovery of the Pion: 1947

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrino


Atmospher Neutrinos

Neutrin Mixing

Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF Cecil Powell takes emulsion photos aboard high altitude RAF flights. A charged particle is found decaying to a muon:

 ${\rm mass}_{\pi^-}=0.1396~{\rm GeV/c^2}$, $\tau=26$ nano-second (ns). Pions are composite particles from the "hadron" family which includes protons and neutrons.

Producing Neutrinos from an Accelerator

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

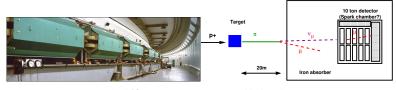
Neutrinos: A History

Solar Neutrino

Atmospher Neutrinos

Neutring Mixing

Supernova Neutrinos


Current Experiment

Future Experiments DUNE/LBNF

Conclusions

1962: Leon Lederman, Melvin Schwartz and Jack Steinberger use a proton beam from BNL's Alternating Gradient Synchrotron (AGS) to produce a beam of neutrinos using the decay $\pi \to \mu \nu_{\rm x}$

The AGS

Making ν 's

The Two-Neutrino Experiment

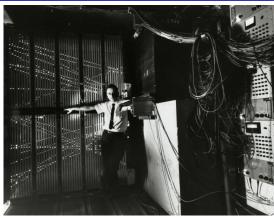
The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospheri Neutrinos


Neutrin Mixing

Supernova Neutrinos

Current Experimen

Experiments
DUNE/LBNF

Conclusions

Result: 40 neutrino interactions recorded in the detector, 6 of the resultant particles where identified as background and 34 identified as

 $\mu \Rightarrow \nu_{x} = \nu_{\mu}$

The first successful accelerator neutrino experiment was at Brookhaven Lab.

Number of Neutrino Flavors: Particle Colliders

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

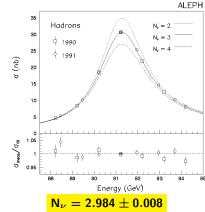
Neutrinos: A History

Solar Neutrinos

Atmospher Neutrinos

Neutrino Mixing

Neutrinos Neutrinos


Current Experiment

Future Experiments DUNE/LBNF <u>1980's - 90's:</u> The number of neutrino types is precisely determined from studies of Z^0 boson properties produced in e^+e^- colliders.

The LEP e⁺e⁻ collider at CERN, Switzerland

The 27km LEP ring was reused to build the Large Hadron Collider

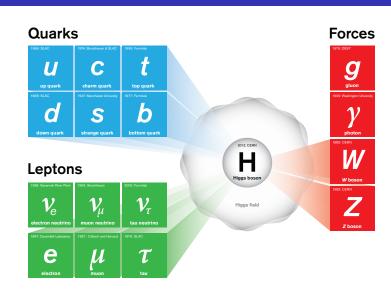
The Particle Zoo

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrino


Atmospheri Neutrinos

Neutring Mixing

Supernova Neutrinos

Current Experiment

Future Experiment DUNE/LBN

Sources of Neutrinos

The Little Neutral One

Mary Bisha Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospheri Neutrinos

Neutrin Mixing

Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

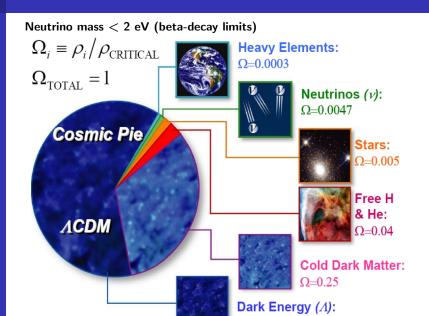
Neutrinos and Todays Universe

The Little Neutral One

Mary Bisha Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrino


Atmospher Neutrinos

Neutrino

Supernova Neutrinos

Current Experiments

Experiment DUNE/LBN

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Solar

Atmospheri

Neutrino

Supernova

Current

Experiments

Camaluaiana

NEUTRINO MIXING AND OSCILLATIONS

Solar Neutrinos

The Little Neutral One

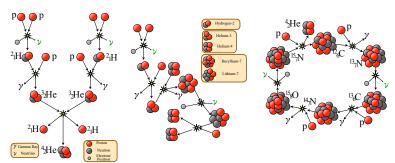
Mary Bisha Brookhaver National Laboratory

Neutrinos: A

Solar Neutrinos

Atmospher Neutrinos

Neutring Mixing


Supernova Neutrinos

Current Experiment

Experiment DUNE/LBN

Conclusion

Fusion of nuclei in the Sun produces solar energy and neutrinos

The Homestake Experiment

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: History

Solar Neutrinos

Atmospher Neutrinos

Neutrino Mixing

Supernova Neutrinos

Current Experiment

Future Experiment DUNE/LBNF 1967: Ray Davis from BNL installs a large detector, containing 615 tons of tetrachloroethylene (cleaning fluid), 1.6km underground in Homestake mine, SD.

- 1 $\nu_{\rm e}^{\rm sun} + ^{37}{\rm CL} \rightarrow {\rm e}^- + ^{37}{\rm Ar}, \ \tau(^{37}{\rm Ar}) = 35 {\rm days}.$
- 2 Number of Ar atoms \approx number of $\nu_{\rm e}^{\rm sun}$ interactions.

Ray Davis

Results: 1969 - 1993 Measured 2.5 \pm 0.2 SNU (1 SNU = 1 neutrino interaction per second for 10^{36} target atoms) while theory predicts 8 SNU. This is a $\frac{v^{\text{sun}}}{v^{\text{e}}}$ deficit of 69%.

Where did the suns ν_e 's go?

RAY DAVIS SHARES 2002 NOBEL PRIZE

SNO Experiment: Solar ν Measurments $1 \leftrightarrow 2 \text{ mix ing}$

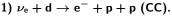
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: History

Solar Neutrinos

Atmospher Neutrinos


Neutrin Mixing

Supernova Neutrinos

Current Experiment

Experiments
DUNE/LBNF

2001-02: Sudbury Neutrino Observatory. Water Čerenkov detector with 1 kT heavy water (0.5 B\$ worth on loan from Atomic Energy of Canada Ltd.) located 2Km below ground in INCO's Creighton nickel mine near Sudbury, Ontario. Can detect the following $\nu^{\rm sun}$ interactions:

2)
$$\nu_x + d \rightarrow p + n + \nu_x$$
 (NC).

3)
$$\nu_{x} + e^{-} \rightarrow e^{-} + \nu_{x}$$
 (ES).

$$\phi^{\text{CC}}_{\mathsf{SNO}}(
u_{\mathrm{e}}) = 1.75 \pm 0.07 (\mathrm{stat})^{+0.12}_{-0.11} (\mathrm{sys.}) \pm 0.05 (\mathrm{theor}) imes 10^6 \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

$$\phi_{\rm SNO}^{\rm ES}(\nu_{\rm x}) = 2.39 \pm 0.34({\rm stat})_{-0.14}^{+0.16}({\rm sys.}) \pm \times 10^6 {\rm cm}^{-2} {\rm s}^{-1}$$

 $\phi_{\rm SNO}^{\rm NC}(\nu_{\rm x}) = 5.09 \pm 0.44({\rm stat})_{-0.43}^{+0.16}({\rm sys.}) \pm \times 10^6 {\rm cm}^{-2} {\rm s}^{-1}$

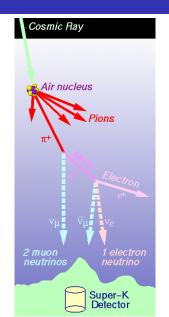
All the solar ν 's are there but $\nu_{\rm e}$ appears as $\nu_{\rm x}!$

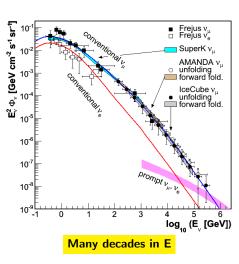
Neutrinos from our Atmosphere: $u_{\mu}, u_{\rm e}, \bar{ u}$

Mary Bishai Brookhaven National Laboratory

Neutrinos: . History

Solar Neutrino


Atmospheric Neutrinos


Neutrino Mixing

Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

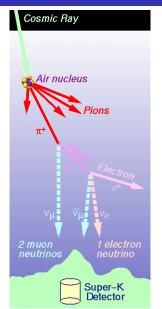
Neutrinos from our Atmosphere: $u_{\mu}, u_{\rm e}, \bar{ u}$

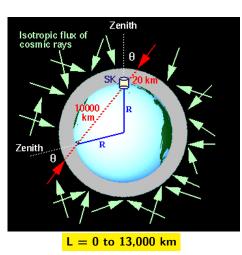
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrino


Atmospheric Neutrinos


Neutrino

Supernova Neutrinos

Current Experiment

Future Experiment DUNE/LBN

The Super-Kamiokande Experiment. Kamioka Mine, Japan

The Little Neutral One

Mary Bisha Brookhaven National Laboratory

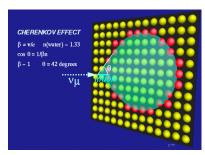
Neutrinos: History

Solar Neutrino

Atmospheric Neutrinos


Neutrino

Supernova Neutrinos


Current Experiment

Future Experiments DUNE/LBNF

Conclus

50kT double layered tank of ultra pure water surrounded by 11,146 20" diameter photomultiplier tubes. Neutrinos are identified by using CC interaction $\nu_{\mu, \rm e} \to {\rm e}^\pm, \mu^\pm {\rm X}.$ The lepton produces Cherenkov light as it goes through the detector:

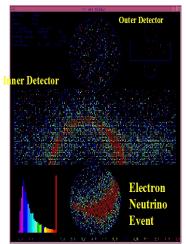
The Super-Kamiokande Experiment. Kamioka Mine, Japan

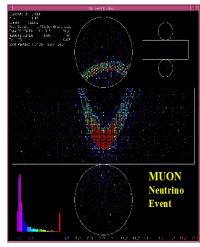
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A

Solar Neutrino


Atmospheric Neutrinos


Neutrino

Supernova

Current

Experiment

More Disappearing Neutrinos!!

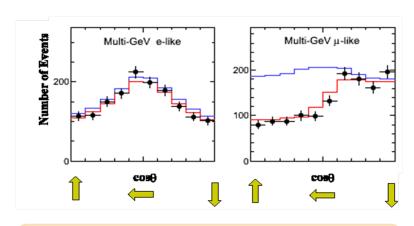
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: / History

Solar Neutrino

Atmospheric Neutrinos


Neutrino

Supernova Neutrinos

Current Experiment

Future Experiment DUNE/LBN

Conclusion

All the $\nu_{\rm e}$ are there! But what happened to the ν_{μ} ??

Some Quantum Mechanics

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: History

Solar Neutrino

Atmospher Neutrinos

Neutrino Mixing

Supernova Neutrinos

Current Experiment

Future Experiment DUNE/LBN

Conclusion

1924: Louis-Victor-Pierre-Raymond, 7th duc de Broglie proposes in his doctoral thesis that all matter has wave-like and particle-like properties.

For highly relativistic particles : energy \approx momentum

De Broglie

Wavelength (nm)
$$\approx \frac{1.24 \times 10^{-6} \text{ GeV.nm}}{\text{Energy (GeV)}}$$

Neutrino Mixing

The Little Neutral One

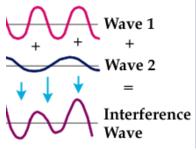
Mary Bisha Brookhaven National Laboratory

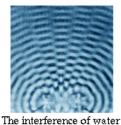
Neutrinos: A History

Solar Neutrinos

Atmospheri Neutrinos

Neutrino Mixing


Neutrinos


Current Experiments

Experiment DUNE/LBNI

Conclusions

1957,1967: B. Pontecorvo proposes that neutrinos of a particular flavor are a mix of quantum states with different masses that propagate with different phases:

The interference of water waves coming from two sources.

The inteference pattern depends on the difference in masses

Neutrino Mixing ⇒ Oscillations

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrinos

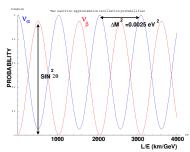
Atmospheri Neutrinos

Neutrino Mixing

Supernova Neutrinos

Current Experiments

Future Experiments DUNE/LBNF


Conclusions

$$\left(\begin{array}{c} \mathbf{\nu_a} \\ \mathbf{\nu_b} \end{array}\right) = \left(\begin{array}{cc} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{array}\right) \left(\begin{array}{c} \nu_1 \\ \nu_2 \end{array}\right)$$

$$\begin{split} \nu_a(t) &= \cos(\theta)\nu_1(t) + \sin(\theta)\nu_2(t) \\ P(\nu_a \rightarrow \nu_b) &= |<\nu_b|\nu_a(t)>|^2 \\ &= \sin^2(\theta)\cos^2(\theta)|e^{-iE_2t} - e^{-iE_1t}|^2 \end{split}$$

$$\begin{split} \mathsf{P}(\textcolor{red}{\nu_{a}} \to \textcolor{red}{\nu_{b}}) &= \mathsf{sin}^{2} \, 2\theta \, \mathsf{sin}^{2} \, \frac{1.27\Delta \mathsf{m}_{21}^{2}\mathsf{L}}{\mathsf{E}} \\ \mathsf{where} \, \Delta \mathsf{m}_{21}^{2} &= (\mathsf{m}_{2}^{2} - \mathsf{m}_{1}^{2}) \, \, \mathsf{in} \, \, \mathsf{eV}^{2}, \\ \mathsf{L} \, \, (\mathsf{km}) \, \, \mathsf{and} \, \, \mathsf{E} \, \, (\mathsf{GeV}). \end{split}$$

Observation of oscillations implies non-zero mass eigenstates

Two Different Mass Scales!

Mary Bishai Brookhaven National Laboratory

Neutrinos: . History

Solar Neutrino

Atmospher Neutrinos

Neutrino Mixing

Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

Atmospheric L/E ~ 500 km/GeV

Super-K, atmospheric ν_{μ} Oscillation Data/Prediction (null osc. Decoherence Decay 1.2 0.8 0.6 0.4 0.2 10³ 10 10 10 L/E (km/GeV)

KamLAND, reactor $\bar{\nu}_{\rm e}$ Data - BG - Geo ∇_e Expectation based on osci. parameters determined by KamLAND 100 L_0/E_{π} (km/MeV)

Global fit 2013:

$$\begin{split} \Delta m_{\rm atm}^2 &= 2.43^{+0.06}_{-0.10} \times 10^{-3} \text{ eV}^2 \\ &\sin^2 \theta_{\rm atm} = 0.386^{+0.24}_{-0.21} \end{split}$$

Global fit 2013:

$$\Delta m_{
m solar}^2 = 7.54_{-0.22}^{+0.26} imes 10^{-5} \text{ eV}^2 \sin^2 heta_{
m solar} = 0.307_{-0.16}^{+0.18}$$

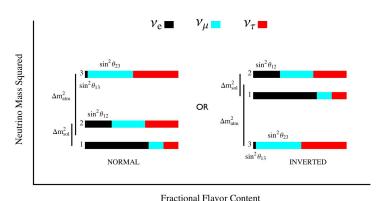
Solar L/E $\sim 15{,}000$ km/GeV

2015 Nobel Prize

The Little Neutral One

Neutrino Mixing

Arthur B. MacDonald Queens University, Canada (SNO)


The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Neutrino Mixing: 3 flavors, 3 amplitudes, 2 mass scales

The Little Neutral One

Neutrino Mixing

 $\sin^2 \theta_{12} \approx \sin^2 \theta_{\rm solar}$ $\sin^2 \theta_{23} \approx \sin^2 \theta_{
m atmospheric}$

Neutrino Mass Mysteries

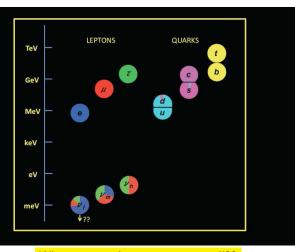
The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrinos

Atmospher Neutrinos


Neutrino Mixing

Supernova Neutrinos

Experiments

Experiments
DUNE/LBNF

C = = = |...=! = = =

Why are neutrino masses so small??

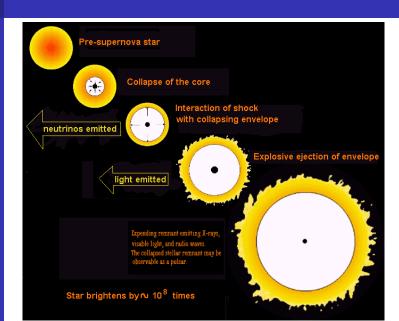
Supernova Neutrinos

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrinos


Atmospheri Neutrinos

Neutring Mixing

Supernova Neutrinos

Current Experiment

Experiment DUNE/LBN

The Irvine-Michigan-Brookhaven (IMB) Detector

The Little Neutral One

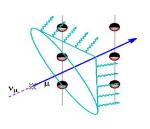
Mary Bisha Brookhaver National Laboratory

Neutrinos: . History

Neutrino

Atmospher Neutrinos

Neutrin Mixing


Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

DUNE/LBNF

A relativistic charged particle going through water, produces a ring of light

The Irvine-Michigan-Brookhaven Detector

IMB consisted of a roughly cubical tank about 17 17.5 23 meters, filled with 2.5 million gallons of ultrapure water in Morton Salt Fariport Mine, Ohio. Tank surrounded by 2,048 photomultiplier tubes. IMB detected fast moving particles produced by proton decay or neutrino interactions

IMB/Kamioka Detect First Supernova Neutrinos!

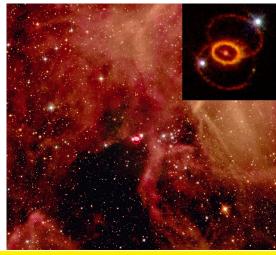
The Little Neutral One

Mary Bisha Brookhave National Laboratory

Neutrinos: A History

Solar Neutrino:

Atmospheri Neutrinos


Neutrin Mixing

Supernova Neutrinos

Experiments

Experiment DUNE/LBNI

Conclusions

1987: Supernova in large Magellanic Cloud (168,000 light years)

IMB/Kamioka Detect First Supernova Neutrinos!

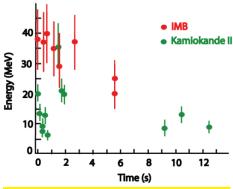
The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospheri Neutrinos


Neutrin Mixing

Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

Conclusions

2-3 hrs earlier: IMB detects 8 neutrinos

AND Kamioka detector (Japan) detects 11 neutrinos

Masatoshi Koshiba (Kamiokande, SuperKamiokande) shares 2002 Nobel Prize with Ray Davis for detection of Cosmic Neutrinos

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A

Solar

Atmospheri

Neutrinos

Neutrino Mixing

Supernova Neutrinos

Current Experiments

Future Experiments DUNE/LBNF

Conclusions

Current Neutrino Experiments

More Reactor $ar{ u_{ m e}}$: The 3rd Mixing Amplitude $(heta_{13})$

The Little Neutral One

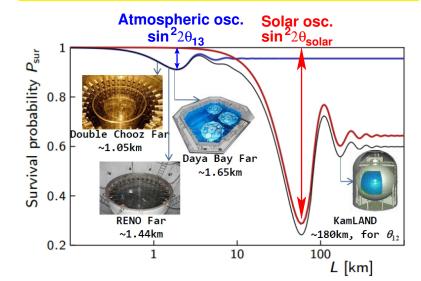
Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrinos

Atmospher Neutrinos

Neutrino Mixing


Supernova Neutrinos

Current Experiments

Future Experiment DUNE/LBNI

Conclusions

 $\sin^2 \theta_{13} = \text{fraction of } \nu_e \text{ in } \nu_3 \text{ state, } \sin^2 \theta_{12} = \text{fraction of } \nu_e \text{ in } \nu_2 \text{ state}$

The Daya Bay Reactor Complex

Mary Bisha Brookhaver National

Neutrinos History

Solar Neutrino

Atmospher Neutrinos

Neutring Mixing

Supernova Neutrinos

Current Experiments

Future Experiment DUNE/LBN

Reactor Specs:

Located 55km north-east of Hong Kong.

Ling Ao II NPP (2011)

(2X2.9 GWth)

Current: 2 cores at Daya Bay site + 2 cores at Ling Ao site $= 11.6 \text{ GW}_{th}$ By 2011: 2 more cores at Ling Ao II

site = 17.4 $GW_{th} \Rightarrow top$ five worldwide

 $1~\text{GW}_\text{th} = 2\times 10^{20} \bar{\nu_\text{e}}/\text{second}$

Deploy multiple near and far detectors

Reactor power uncertainties < 0.1%

The Daya Bay Collaboration: 231 Collaborators

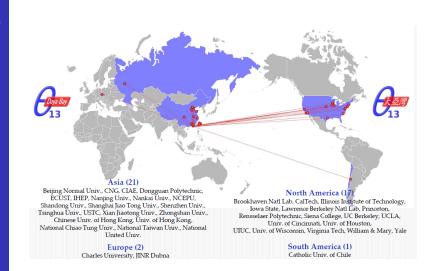
The Little Neutral One

Mary Bisha Brookhave National Laboratory

Neutrinos: . History

Solar Neutrino

Atmospher Neutrinos


Neutrin Mixing

Supernova Neutrinos

Current Experiments

Experiment DUNE/LBN

Conclusions

Detecting Neutrinos from the Daya Bay Reactors

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Solar Neutrinos

Atmospheri Neutrinos

Neutrin Mixing

Supernova Neutrinos

Current Experiments

Experiment

DUNE/LBNF

Conclusions

The active target in each detector is liquid scintillator loaded with 0.1% Gd

- $\bar{\nu}_e + p \rightarrow n + e^+$
- ightharpoonup $m e^+ + e^-
 ightarrow \gamma \gamma \ (2X \ 0.511 \ MeV \ +T_{e^+}, \ prompt)$
- $n + p \rightarrow D + \gamma$ (2.2 MeV, $\tau \sim 180 \mu s$). OR
- lacksquare n + Gd ightarrow Gd* ightarrow Gd + γ 's (8 MeV, $au\sim28\mu\mathrm{s}$).

 \Rightarrow delayed co-incidence of e⁺ conversion and n-capture (> 6 MeV)

with a specfic energy signature

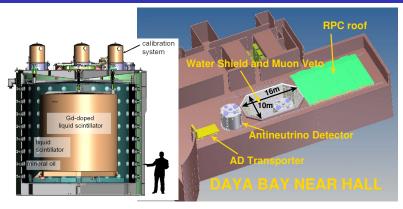
The Daya Bay Experimental Apparatus

The Little Neutral One

Mary Bishal Brookhaven National Laboratory

Neutrinos: History

Solar Neutrino


Atmospher Neutrinos

Neutrino Mixing

Supernova Neutrinos

Current Experiments

Future Experiment DUNE/LBN

- Multiple "identical" detectors at each site.
- Manual and multiple automated calibration systems per detector.
- Thick water shield to reduce cosmogenic and radiation bkgds.

	DYB		
Event rates/20T/day	840	740	90

Daya Bay Measurement of Non-zero $heta_{13}$

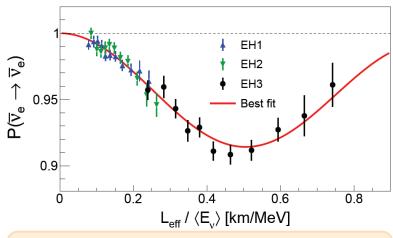
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: / History

Solar Neutrino

Atmospher Neutrinos


Neutrino Mixing

Supernova Neutrinos

Current Experiments

Experiment DUNE/LBNI

Conclusions

First to discover non-zero θ_{13} (2012) and currently most precise result:

$$\sin^2 2\theta_{13} = 0.084 \pm 0.005$$

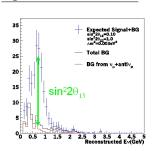
Off-axis high intensity u_{μ} beams: T2K

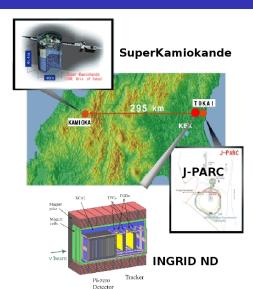
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: . History

Solar Neutrinos


Atmospheri Neutrinos


Neutrino Mixing

Supernova Neutrinos

Current Experiments

Future Experiments DUNE/LBNF First proposed for BNL E-889 (1995): A narrow beam of ν can be achieved by going off-axis to the π beam. Better S:B at oscillation max. Signal at $\sin^2 2\theta_{13} = 0.1$:

T2K first results announced in March 2011

T2K beam $\nu_{\rm e}$ Candidate Event 2010

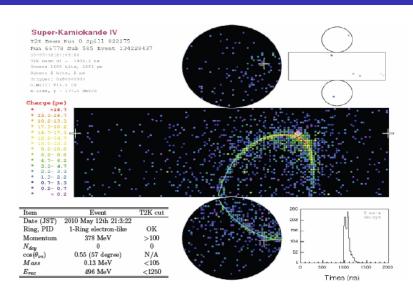
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: History

Solar Neutrino

Atmospheri Neutrinos


Neutring Mixing

Supernova Neutrinos

Current Experiments

Future Experiments DUNE/LBNF

onclusions

T2K: First Observation of $u_{\mu} ightarrow u_{ m e}$ APPEARANCE

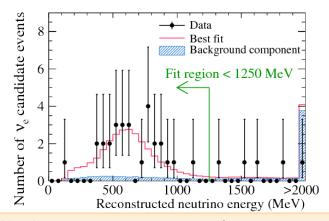
The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Solar Neutrino

Atmospher Neutrinos


Neutring Mixing

Supernova Neutrinos

Current Experiments

Experiment DUNE/LBN

Conclusions

In 2014 T2K observes conversion of ν_{μ} to $\nu_{\rm e}$ (atmospheric oscillation scale) with an amplitude of $\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$.

2016 Breakthrough Prize in Fundamental Physics

The Little

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospher Neutrinos

Neutrin Mixing

Supernova Neutrinos

Current Experiments

Experiment DUNE/LBN

Conclusions

The 2016 Breakthrough Prize in Fundamental Physics awarded to 7 leaders and 1370 members of 5 experiments investigating neutrino oscillation: Daya Bay (China); KamLAND (Japan); K2K / T2K (Japan); Sudbury Neutrino Observatory (Canada); and Super-Kamiokande (Japan)

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A

Solar

Atmospheric

Neutrino

Supernova

Current

Experiment

Future Experiments

Conclusions

Future Neutrino Experiments

Matter Effect on Neutrino Oscillation

The Little Neutral One

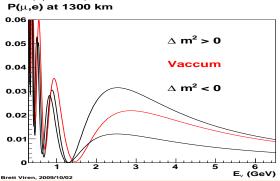
Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Solar Neutrinos

Atmospherio Neutrinos

Neutrino Mixing


Supernova Neutrinos

Experiments

Enture

Experiments
DUNE/LBNF

1978 and 1986: L. Wolfenstein, S. Mikheyev and A. Smirnov propose the scattering of ν_e on electrons in matter acts as a refrective index \Rightarrow neutrinos in matter have different effective mass than in vacuum. For $P_{\rm osc} = P(\nu_{\mu} \rightarrow \nu_e)$:

We can determine the mass ordering (m $_3>m_1$ or m $_1>m_3$) of neutrinos using $\nu_{\mu}\to\nu_e$ oscillations over long distances in the earth.

The NO ν A Experiment

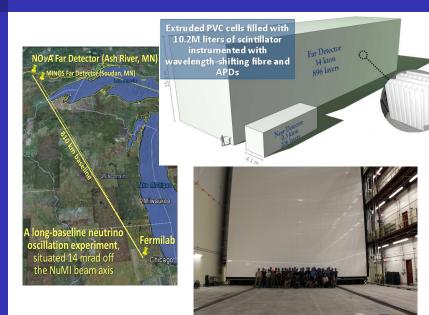
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: / History

Solar Neutrino

Atmospher Neutrinos


Neutrino

Supernova Neutrinos

Current Experiments

Future Experiments DUNE/LBNF

Conclusions

NOvA Collecting Neutrino Events

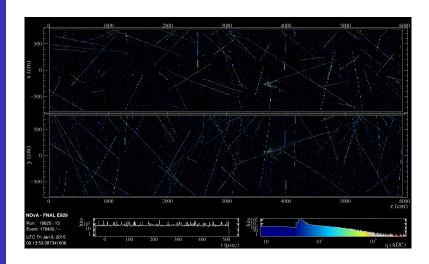
The Little Neutral One

Mary Bisha Brookhaven National Laboratory

Neutrinos: /

Solar Neutrino

Atmospheri Neutrinos


Neutrin Mixing

Supernova Neutrinos

Current Experiment

Future Experiments

Conclusions

NOvA Collecting Neutrino Events

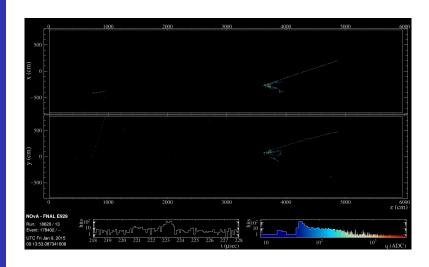
The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A

Solar Neutrinos

Atmospheri Neutrinos


Neutrino

Supernova

Current Experiment

Future Experiments

Canalusiana

Charge-Parity Symmetry

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospher Neutrinos

Neutring Mixing

Supernova Neutrinos

Current Experiment

Experiments
DUNE/LBNF

Charge-parity symmetry: laws of physics are the same if a particle is interchanged with its anti-particle and left and right are swapped. A violation of CP ⇒ matter/anti-matter asymmetry.

Charge-parity Symmetry and Neutrino Mixing

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

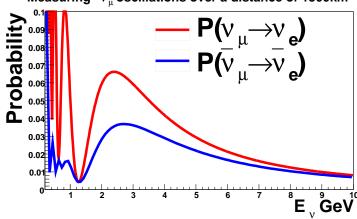
Neutrinos: A History

Solar Neutrinos

Atmospheri Neutrinos

Neutrino Mixing

Neutrinos


Experiment

Experiments
DUNE/LBNF

Conclusions

Measuring v_{μ} oscillations over a distance of 1300km

Could this explain the excess of matter in the Universe?

The Deep Underground Neutrino Experiment (DUNE) - A History

The Little Neutral One

DUNE/LBNF

2008: The US Particle Physics Project Prioritization Panel (P5) recommended a world-class neutrino program as a core component of the US program, with the long-term vision of a large detector at the proposed DUSEL laboratory and a high-intensity neutrino source at Fermilab ⇒ The Long Baseline Neutrino Experiment (LBNE) project in the U.S.

- 2008 2014: LAGUNA/LAGUNA-LBNO Design of a pan-European infrastructure for Large Apparatus for Grand Unification, Neutrino Astrophysics, and Long Baseline Neutrino Oscillations.
- 2013: European Strategy Report calls for CERN to support the European community in contributing to long baseline experiments outside Europe.
- 2014: P5 issued the following recommendations: The U.S. will host a world-leading neutrino program its long-term focus is a reformulated venture referred here as the Long Baseline Neutrino Facility (LBNF).

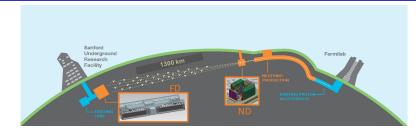
The Deep Underground Neutrino Experiment

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: . History

Solar Neutrino


Atmospheri Neutrinos

Neutring Mixing

Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

- A very long baseline experiment: 1300km from Fermilab in Batavia, IL to the Sanford Underground Research Facility (former Homestake Mine) in Lead, SD.
- A highly capable near detector at Fermilab.
- A very deep (1 mile underground) far detector: massive 40-kton Liquid Argon Time-Projection-Chamber with state-of-the-art instrumentation.
- High intensity tunable wide-band neutrino beam from LBNF produced from upgraded MW-class proton accelerator at Fermilab.

The DUNE Scientific Collaboration

USA

Poland

Czech Republic

Mary Bishai Brookhaven National Laboratory

Neutrinos: A

Solar Neutrino

Atmospher

Neutrin Mixing

Supernov Neutrinos

Current Experime

Future

DUNE/LBN

Conclusio

776 Collaborators

144 Institutes

Scientific Objectives of DUNE

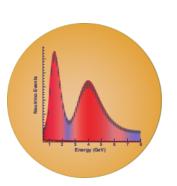
The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Solar Neutrino

Atmospher Neutrinos


Neutrin Mixing

Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

Conclusion

- I precision measurements of the parameters that govern $\nu_{\mu} \rightarrow \nu_{e}$ oscillations; this includes precision measurement of the third mixing angle θ_{13} , measurement of the charge-parity (CP) violating phase δ_{CP} , and determination of the neutrino mass ordering (the sign of $\Delta m_{31}^2 = m_3^2 m_1^2$), the so-called mass hierarchy
- 2 precision measurements of the mixing angle θ_{23} , including the determination of the octant in which this angle lies, and the value of the mass difference, $-\Delta m_{32}^2$ —, in $\nu_{\mu} \rightarrow \nu_{e,\mu}$ oscillations

Scientific Objectives of DUNE

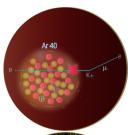
The Little Neutral One

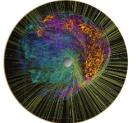
Mary Bishai Brookhaven National Laboratory

Neutrinos: / History

Solar Neutrino

Atmospher Neutrinos


Neutrin Mixing


Supernova Neutrinos

Current Experiment

Experiments
DUNE/LBNF

Conclusion

- 3 search for proton decay, yielding significant improvement in the current limits on the partial lifetime of the proton (τ/BR) in one or more important candidate decay modes, e.g., $p \to K^+ \overline{\nu}$
- 4 detection and measurement of the neutrino flux from a core-collapse supernova within our galaxy, should one occur during the lifetime of DUNE

The Sanford Underground Research Facility

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Neutrino

Atmospher Neutrinos

Neutrin Mixing

Supernova Neutrinos

Current Experimen

Experiments
DUNE/LBNF

Conclusions

Experimental facility operated by the state of South Dakota. LUX (dark matter) and Majorana $(0\nu-2\beta)$ demonstrator operational expts at 4850-ft level. Chosen as site of G2 dark matter experiment

The DUNE Far Detector

The Little Neutral One

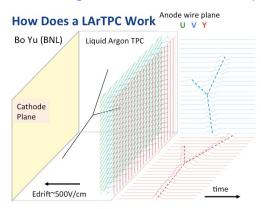
Mary Bishai Brookhaven National Laboratory

Neutrinos: / History

Solar Neutrinos

Atmospheri Neutrinos

Neutrino Mixing


Supernova Neutrinos

Current Experiments

Experiments
DUNE/LBNF

Conclusions

A large cryogenic liquid Argon detector located a mile underground in the former Homestake Mine with a mass of at least 40 kilo-tons is used to image neutrino interactions with unprecedented precision:

The wireplane in a small LArTPC

The DUNE Far Detector

The Little Neutral One

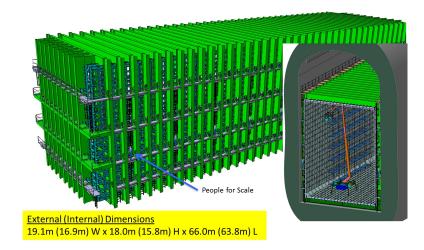
Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Solar Neutrino

Atmospher Neutrinos

Neutring Mixing


Supernova Neutrinos

Current Experiment

Experiments
DUNE/LBNF

Conclusions

The 40-kton (fiducial) detector is constructed of four modules with a total mass of 17.4 kton each.

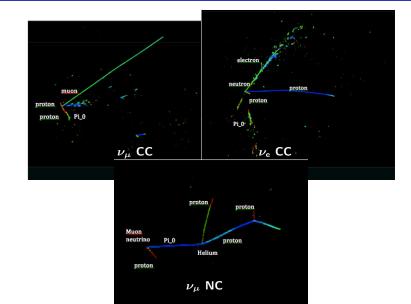
Reconstructed Neutrino Interactions in a LArTPC

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Solar Neutrinos


Atmospheri Neutrinos

Neutrin Mixing

Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

Oscillation signals Exposure: 150 kT.MW.yr (equal $\nu/\bar{\nu}$)

The Little Neutral One

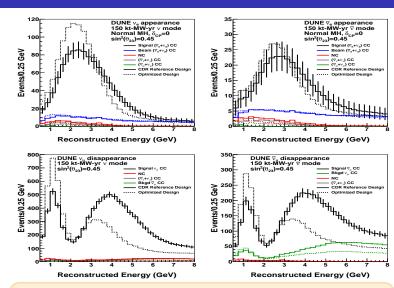
Mary Bishai Brookhaven National Laboratory

Neutrinos: . History

Solar Neutrinos

Atmospheri

Neutrino Mixing


Supernova Neutrinos

Current Experiment

Experiments

DUNE/LBNF

Conclusions

Simultaneous fit to all four samples to determine osc. params

Possible Supernova Signature in DUNE

The Little Neutral One

Mary Bisha Brookhave National Laboratory

Neutrinos: A History

Solar Neutrinos

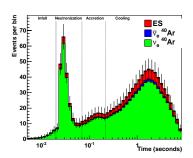
Atmospheri Neutrinos

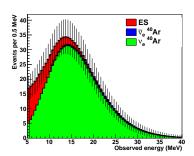
Neutrino Mixing

Supernova Neutrinos

Current Experiment

Experiments


DUNE/LBNF


Conclusions

Liquid argon is particularly sensitive to the $\nu_{\rm e}$ component of a supernova neutrino burst:

$$\nu_{\rm e} + {}^{40} {\rm Ar} \rightarrow {\rm e}^- + {}^{40} {\rm K}^*,$$
 (1)

Expected time-dependent signal in 40 kton of liquid argon for a Supernova at 10 kpc:

Time distribution

Energy spectrum (time integrated)

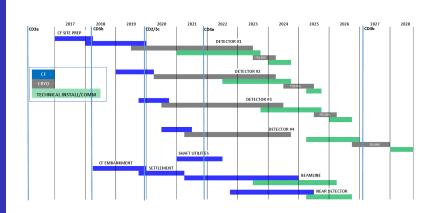
LBNF/DUNE Schedule

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Solar Neutrinos


Atmospheri Neutrinos

Neutrino

Supernova Neutrinos

Current Experiment

Future Experiments DUNE/LBNF

Summary

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Solar Neutrino

Atmospheri Neutrinos

Neutrin Mixing

Supernova Neutrinos

Current Experiment

Future Experiment DUNE/LBN

Conclusions

- Neutrinos have been at the forefront of fundamental discoveries in particle physics for decades.
- Discoveries of neutrino properties like the very small mass, large almost maximal mixing, are the ONLY direct evidence for physics beyond the Standard Model of particle physics, and new hidden symmetries.
- The future LBNF/DUNE project is a new ambitious multi-national neutrino experiment based in the US designed to probe matter/anti-matter asymmetries, neutrino oscillations and cosmological neutrinos with unprecedented precision.

The Little Neutral One

Mary Bishai Brookhaven National

Neutrinos: A

Solar Neutrinos

Atmospheri Neutrinos

Neutrino

Supernova Neutrinos

Current Experiment

Experimen

Conclusions

